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The principle of a complex interval-valued Pythagorean fuzzy set (CIVPFS)
is a valuable procedure to manage inconsistent and awkward information
genuine life troubles. The principle of CIVPFS is a mixture of the two
separated theories such as complex fuzzy set and interval-valued
Pythagorean fuzzy set which covers the truth grade (TG) and falsity grade
(FG) in the form of the complex number whose real and unreal parts are the
sub-interval of the unit interval. The superiority of the CIVPFS is that the
sum of the square of the upper grade of the real part (also for an unreal part)
of the duplet is restricted to the unit interval. The goal of this article is to
explore the new principle of CIVPFS and its algebraic operational laws. By
using the CIVPFSs, certain Einstein operational laws by using the t-norm and
t-conorm are also developed. Additionally, we explore the complex interval-
valued Pythagorean fuzzy Einstein weighted geometric (CIVPFEWG),
complex interval-valued Pythagorean fuzzy Einstein ordered weighted
geometric (CIVPFEOWG) operators and utilized their special cases.
Moreover, a multicriteria decision-making (MCDM) technique is explored
based on the elaborated operators by using the complex interval-valued
Pythagorean fuzzy (CIVPF) information. To determine the consistency and
reliability of the elaborated operators, we illustrated certain examples by
using the explored principles. Finally, to determine the supremacy and
dominance of the explored theories, the comparative analysis and graphical
expressions of the developed principles are also discussed.
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1. Introduction

Because of the expanding intricacy of the framework, it is hard for the leader to choose the best other
option/object from a family of appealing choices. Be that as it may, it is difficult, to sum up, yet it is not
staggering to accomplish the best single objective. Countless MCDM issues exist in decision-making, where
the rules are found to be dubious, equivocal, loose, and obscure. Therefore, the fresh set gives off an
impression of being inadequate in managing this vulnerability and imprecision in the information and can be
handily managed by utilizing fuzzy data. To manage such vulnerability also, vagueness, the principle of the
fuzzy set (FS) was elaborated by Zadeh (1965). FS gives the truth grade (TG) against the value which is
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taken from the set of attributes is limited to the unit interval. After their successful utilization, certain
scholars have employed it in the natural environment of separated areas. For example, interval-valued FS was
explored by Zadeh (1975), Torra (2010) elaborated the principle of hesitant FS (HFS), Karnik and Mendel
(2001) utilized certain operational laws based on type-2 FS (T-2FS), Mendel and John (2002) developed T-
2FS made simple, and Mahmood (2020) developed the theory of bipolar soft sets.

The principle of FS has been utilized in separated areas, but the principle of FS has limited applications
due to its structure. Because if a person faced information in the form of TG and falsity grade (FG), then the
principle of FS has been failed in certain actual life troubles. To conquer this deficiency and adjust to the
uninterrupted complicacy of certain actual life troubles, a type of intuitionistic FS (IFS) was implemented at
Atanassov (1986). IFS gives the information’s in the form of TG and FG against the value which is taken
from the set of attributes with a rule that is the sum duplet is limited to the unit interval. After their successful
utilization, certain scholars have employed it in the natural environment of separated areas. For example,
Atanassov (1989) developed the interval-valued IFS and their application’s; Garg and Rani (2021) explored
similarity measures based on the transformed right-angle tringles among IFSs, Ejegwa and Onyeke (2021)
intuitionistic fuzzy statistical correlation algorithm, Xue et al. (2021) utilized the measure-based belief
function by using the IFSs, Aydin and Enginoglu (2021) proposed interval-valued intuitionistic fuzzy
parametrized interval-valued intuitionistic fuzzy soft sets, Huang et al. (2021) developed the complete
ranking method for interval-valued IFSs, and Ecer and Pamucer (2021) initiated the MARCOS method for
IFSs.

The principle of IFS has been utilized in separated areas, but the principle of IFS has limited applications
due to its structure. Because if a person faced information in the form of TG and falsity grade (FG) with a
condition that is the sum of duplet is exceeded from the unit interval, then the principle of IFS has been failed
in certain actual life troubles. To conquer this deficiency and adjust to the uninterrupted complicacy of
certain actual life troubles, a type of Pythagorean FS (PFS) was implemented by Yager (2013). PFS gives the
information’s in the form of TG and FG against the value which is taken from the set of attributes with a rule
that is the sum of the squares of duplet is limited to the unit interval. After their successful utilization, certain
scholars have employed it in the natural environment of separated areas. For example, Garg (2016) explored
interval-valued PFSs and their application’s, Ayyildiz and Gumus (2021) utilized the AHP method based on
interval-valued PFSs, Ejegwa et al. (2021) implemented the correlation measures by using the PFSs, Zhao et
al. (2021) explored TODIM method for interval-valued PFSs, Gao et al. (2021) developed the quantum
Pythagorean fuzzy evidence theory, Pan et al. (2021) proposed similarity measures for PFSs, Zulgarnain et
al. (2021) initiated the TOPSIS method for Pythagorean fuzzy hyper-soft sets, Rani et al. (2021) developed
the weighted discrimination based approximation approach by using the PFSs, Calik (2021) initiated the
AHP and TOPSIS method for PFSs and discussed their application in green supplier chain management,
Chen (2021) developed the likelihood-based optimization based on PFSs.

All the prevailing theories based on FS and their modifications, inconsistency, and uncertainties are
involved in the form of TG whose value is also in the form of real numbers and certain user information may
be lost and the decision-maker is affected by this. To manage such vulnerability, the principle of complex FS
(CFS) was elaborated by Ramot et al. (2002). CFS gives the TG against the value which is taken from the set
of attributes in the form of a complex number whose real and unreal parts are limited to the unit interval.
After their successful utilization, certain scholars have employed it in the natural environment of separated
areas. The principle of CFS has been utilized in separated areas, but the principle of CFS has limited
applications due to its structure. Because if a person faced information in the form of TG and FG, then the
principle of CFS has been failed in certain actual life troubles. To conquer this deficiency and adjust to the
uninterrupted complicacy of certain actual life troubles, a type of complex IFS (CIFS) was implemented
Alkouri and Salleh (2012). CIFS gives the information’s in the form of TG and FG against the value which is
taken from the set of attributes with a rule that is the sum of the real part (also for the imaginary part) of
duplet is limited to the unit interval. After their successful utilization, certain scholars have employed it in the
natural environment of separated areas. For example, Garg and Rani (2019a) initiated the complex interval-
valued IFSs and their application’s, Garg and Rani (2019b) explored the information measures for CIFSs, Ali
et al. (2016) proposed complex intuitionistic fuzzy classes, Garg and Rani (2019c) initiated the correlation
coefficient for CIFSs, Kumar, and Bajaj (2014) developed distance measures by using the complex
intuitionistic fuzzy soft sets, Garg and Rani (2019d) elaborated the generalized geometric aggregation
operators for CIFSs, Ngan et al. (2020) proposed quaternion numbers based on CIFSs, Rani and Garg [35]
explored the power aggregation operators based on CIFSs.

The principle of CIFS has been utilized in separated areas, but the principle of CIFS has limited
applications due to its structure. Because if a person faced information in the form of TG and FG with a
condition that is the sum of the real part (also for the imaginary part) of the duplet is exceeded from the unit
interval, then the principle of CIFS has been failed in certain actual life troubles. To conquer this deficiency
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and adjust to the uninterrupted complicacy of certain actual life troubles, a type of complex PFS (CPFS) was
implemented Ullah et al. (2020). CPFS gives the information’s in the form of TG and FG against the value
which is taken from the set of attributes with a rule that is the sum of the squares of the real part (also for the
imaginary part) of the duplet is limited to the unit interval. After their successful utilization, certain scholars
have employed it in the natural environment of separated areas. But no one proposed the theory of complex
interval-valued Pythagorean fuzzy set (CIVPFS) and utilized any measures, operators, and methods in the
environment of CIVPFSs. Ullah et al. (2020) only explored some measures based on CPFSs, but to determine
the relationship among any number of attributes when they are in the form of interval-valued, then the
existing theories have been failed, similarly, aggregation operators is one of the important techniques to
manage inconsistent and unreliable information in genuine life troubles. For this, we explored some Einstein
operational laws by using the novel approach of CIVPFSs. The main goals of this manuscript are discussed
below.
1. To propose the novel approach of CIVPFSs and their algebraic laws.
2. To explore certain Einstein operational laws by using the t-norm and t-conorm based on
CIVPFSs.
3. To explore the CIVPFEWG, CIVPFEOWG operators, and utilized their special cases by using
the elaborated Einstein laws.
4. To explore an MCDM technique based on the elaborated operators by using the CIVPF
information.
5. To determine the consistency and reliability of the elaborated operators, we illustrated certain
examples by using the explored principles.
6. To determine the supremacy and dominance of the explored theories, the comparative analysis
and graphical expressions of the developed principles are also discussed.

The rest of this article is following as, in section 2, we briefly review some basic ideas such as CIVIFSs
and their useful laws. In section 3, we explore a novel approach to CIVPFSs and their algebraic laws. In
section 4, we explore certain Einstein operational laws by using the t-norm and t-conorm based on CIVPFSs.
In section 5, we explore the CIVPFEWG, CIVPFEOWG operators, and utilized their special cases. In section
6, an MCDM technique is explored based on the elaborated operators by using the CIVPF information. To
determine the consistency and reliability of the elaborated operators, we illustrated certain examples by using
the explored principles. Finally, to determine the supremacy and dominance of the explored theories, the
comparative analysis and graphical expressions of the developed principles are also discussed. In section 7,
we discussed the conclusion of this manuscript.

2. Preliminaries

This study aims to briefly review some basic ideas such as CIVIFSs and their useful laws which are
helpful for the elaborated approaches in the next study. Additionally, in the overall manuscript the symbols
X,ni expressed the fixed set and the value of truth grade (TG) and falsity grade (FG) are denoted by Ty, =

. — + . - +
[”Jl‘;rp,T;rp] elzn([TT iP’TTiP]) and Fy,, = [IF;W,IF}W] elzn([ﬁf iP’IFTiP]). By using the above information, the
; - +
principle of CIVFS covers the TG Tg, = [T;Tp,T;rp] e””([Tﬂp'TFip]) with a rule that is
"Jl‘;rp,T;ip,"Jl‘;rp,"Jl‘;ip € [0,1]. But there were some troubles if a person faced such sort of information that

. —_ + . —_ +
covers the TG T¢,, = [T;rp, 'ﬂ";rp] e‘Z”([T?ip'Tf'ip]) and FG Fr,, = []Fﬂ_frp' ]F;Erp] 9’2"([&@’%@])7 then the
principle of CIVFS has been failed. To resolve these sorts of troubles, the principle of CIVIFS was developed
by Garg and Rani (2019a) is discussed below.
Definition 1: (Garg and Rani, 2019a) An CIVIFS F; is stated by:

Fo = {(TTCL- (Xe), IFTCL-(Xel)) ‘Xq € Xuni} (1)

: - ot : = ot
Where Tg,, = [Tﬂ_frprT;rp] e o153, ) and Fg,, = [ng_rrp,]F}rp] elzn([FT i) with conditions that
are 0 < T;t-rp(xel) + ]F;Tp (X)) £10< ’Il";ip (Xe) + [F;t-ip(xel) < 1. The refusal grade (RG) is stated by

o Gtet) =[5, Gra, 8, (0] € 2T e 00]) [ (77, Gren) + P, G ) 1 -

izn( |1-( TZ, (xe)+F7. (x, )),1—(?# (Xe)+FE, (x ))D )
(’ﬂ‘}rp(xel)+]F}Tp(Xez)>]e ([ (TW T Fip et P )] In the overall manuscript, the
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complex interval-valued intuitionistic fuzzy numbers (CIVIFNSs) are stated by
: - + : — +
Fo y ([T?m » T}‘rp j] elzﬂ([TTip—j‘TTip—j])_ [[F;rp_j, [F;:"rp_j] elzn([]FTip—j’FTip—j])) =12, .., m,
Moreover, by using any two CIVIFNs
i = +
oy = ([T T e O[5, JeEr)) = 12,

[T;rp-l + Tg_’"rp-z - Tg_’"rp-lT;TP‘z'] ei2”< ) \
_ + + _ T+ + ’
Tcp—l @ Tcp—Z - | TTrp—1 + Tg:rp—Z Tf]:rp—1T7:rp—2 |

; — - + +
] e12”([[F?ip—lIFTip—Z‘[FTip—lIFTip—ZD /

Tfip—l+T$ip—2_TTip—1T7:ip—2'
+ + _mt +
TTip—1+TTip—2 TTip—lTTip—z

- - + +
[F?rp—llF?rp—z' E:7:1‘p—1IF7:rp—2

+
_ _ " + lZ”([T}"l Ty, _TF. _ T#
p-1 Tip-2" Tip-1 Tip- 2
[TTrp—lTTrp—z’ T:Frp—l']rfprp—z] e
— Fr +Fr -Fz
Tcp—l ®Tcp—2 —l ]F_ +]F_ —]F_ ]F_ i Tl.p 1 Tlp 2 Tlp 1 TLp -2’ | (3)
Frp-1 Frp-2 Frp-1" Frp-2’ ]Fgrlp 1+Ffip—2 lp 1 Lp 2
Frps t Fi,, —Fr,  Fr
rp—-1 -2 rp-1" Srp-2

1pSCTCp—I =

[<1 (o, ) (1= - T;m_l)wsc);l eiZﬂ(|<1-(1-Tap-1)””“)5'(1-(1—%-1)‘”“)i ) .

. - IIJSC + IAb.S‘C
- Ysc @+ W¥sc 12”([]FT- _q CCFE L ])
[[Ffrp—l ’ IFTrp—l ] € v ?

Ysc _
Tcpscl -

[Tﬂ_f ¥se, T ¢sc] e izn([T;ip—lwscm;ipﬂwsc]),

rp—-1 ? 2 Frp-1
1-(1-F% Vse
_( - j'"ip—1>

[(1 (1~ F;r,,_l)l”“)%.@ ~(1- F;rp_l)l”SC);]eiz"( (+-(52,.)") ) )

Moreover, to determine the interrelationships among any numbers of attributes, we briefly discussed the
score function (SF) and accuracy function (AF), which are stated by:

Tz . +Tf +Tz . +Tf . —
1 L7, Ty F; Fip
sz(Tcp—l) — E( p=Jj p—Jj ip-j ~ +P J >’§sf(Tcp_1) € [-1,1] ©)

[F= — % — F= F
Frp-j Frp-j Fip-j Fip-j

1 1
2 2

o 1 (TFp 'Il“frp v Tr,  + 'Il“flp it o
HY (Fepy) = = JHY (Fep-1) € [01] )
2\ Fz +Ff +Fz +FF
L A =] tp=J p=J
By using any two CIVIFNs

Ter-) <[TTTI7 -5 TTrp ]]elzn([Tﬂp - ] []Ff =)’ IFTrp 1] elzn([FTW - 1])>

,j = 1,2, then
1L WSS (Fopoy) >SS (Fopoz) = Fopoy > Fepa
o ST (Fpor) < S (Fepoz) = Fepo1 < Fepoas
3. IS (Fpoy) = S (Frpz) =
1) WHY(Fppoy) > HY (Frpoy) = Fopoy > Fepa
2) WHY(Fepoy) < HY(Fppoz) = Fopoy < Fepa
3) HHY(Fpoy) = HY (Frpoz) = Fep1 = Fepa-

3. Complex Interval-valued Pythagorean Fuzzy sets

But there were some troubles if a person faced such sort of information which covers the TG Ty, =

[T;TP,T;;TP]eLZﬂ([TTWTTw]) and lFTﬂ.=[IF;rp,IF;rp]eizn([F;w'F;iv]) with a rule that is Tf (x.)+
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]F;rp X, 'ﬂ‘;ip (xq) + lF;ip (X¢;) > 1, then the principle of CIVIFS has been failed. For instance, if we gave

[0.5,0.6]e27U0305D for TG and [0.1,0.5]e?27(0306D for FG, then by using the conditions of CIVIFS is
failed i.e., 0.6 4+0.5=1.1>1,05+0.6 =1.1> 1. To resolve these sorts of troubles, the principle of
CIVPFS is explored in this study. By using the theory of CIVPFS, certain laws are also elaborated.
Definition 2: A CIVPFS F,, is stated by:

Tcp = {(T?CP (Xer), IFTcp (Xel)) ‘Xq € Xuni} (8)

Where Tz, = [TEW,T}-W] elzn([TT ' w]) and Fz,, = [JF:ETP,]F;TP] emT([IFT i w]) with certain rules that
are., 0 < TF,*(x) + Ff *(xe) < 1,0 < ’H‘;ipz(xel) + [F}_ipz(xel) < 1. The RG is stated by 7 (xe;) =

1
_ 2|7, (e, Geon) _ _ : 2
I:H_?rp(xel)’ n;rp (Xel)] el ﬂ([”TLp Xe| ”Tlp Xel ]) = <1 - (TTTPZ(Xel) + FTrpz(xel)>> (1 - (T}:‘Tp (Xel) +
1
2

1
2
% i2n< <1—<1r;ip2(xe,)+1F;ip2(xel))> ,<1—(1r;ip2(x61)+1F;ip2(xel)>> D
+ 2
Fz,, (Xel))> e

complex interval-valued Pythagorean fuzzy numbers (CIVPFNS) are  stated by
Fep-j = ([T;rp—f' ’ﬂ‘;;w_j] eizn([ww—jﬂm—j])' [IF;TP-J"IF;W—J'] elzn([F oo ’D>J =12,..,m
Moreover, by using any two CPFNs
i e

Fep-1 ®Fep—2 =

1
- - - - 2 +2 +2 +2
/[Tfrp 1+TTrp2 Tg:‘rp 1T Frp- 2) (T Frp-1 Tfrpz TTrpl Trpz ]\
1
2

. In the overall manuscript, the

1
| -2 _2 -2 2 +2 +2 _mt2 +2 2 9
| el2n< (T Fipr T Fip2 ™1 Fipa T Fip- 2) '(T Fipa1tT Fipy ™1 Fippy T Fipp 2) > | ©)
)
: - - + +
= = + + 12”(["7}"- _Fr, _Fg. _ Fr. _ ])
\ [F?rp—lFTTp—Z' FTTP—IFTTp—Z]e ip—-1 “ip-2 ip—1 “ip-2
cp—l ® chp—Z =
_ _ + + lZTL’([Ty: M7 TE_ TH, ])
/ I:’]TTTP—lTTTp—Z'T?rp—1T?rp—2] e P lp -1 -2
L 1
— - - - 2 _ mt2 +2 2
[(IF Frp-1 +F7; Frp-2 -F7% Frp- 1IF Frp- 2) ( Frp-1 Trp 2 FF Frp- 1IF Trp—z) ] (10)
1
2

1
-2 —2 _ 2 +2 2
(]F Fip-1 ]Fszz ]Fﬂp i sz 2)‘(1F Fip- 1+]F Fip-2— ]FTLp 1F Fip- 2)

el

i2n(
e

l
B | S (ST
lF"’”SC JFrEsC

[]F—wsc [F+’¢’SC ]eizn([ ip-1" Fip- 1])
1

11y

7'17 'rp 1
AR
( g rose e IR, \
3 1
_ PYsc % .2 Vsc % i2n< <1—(1—1F—;ip_1)¢50>2< (1 Wﬂp 1)¢SC>2>
S TR
(12)

If we choose the value of 2 =1, then the information in Eq. (9) to Eq. (12) is reduced for CIVIFSs.
Moreover, to determine the interrelationships among any numbers of attributes, we briefly discussed the
score function (SF) and accuracy function (AF), which are stated by:
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Ty, P+Tf C+T7 2+Th -

S (Feper) =2 7 T ) S (Fupoy) € [-1,1] (13)

— 2 _ m+ 2 m- 2 o+ 2
Frrpy” ~Frmpy ~Frpy Fip-j
Tz 2+TH *+Tp 2+TF “+
1 " Frp-j Frp-j Fip-j Fip-j
Haf(TCP—l) = E —p ’ 2 +p ! 2 _p ' 2 +p ! 2 ’Haf(TCP—l) € [0‘1] (14)
]F?rp—j + ]FTrp—j + ]FTip—j + [Ffip—j
By using any two CIVPFNs

Tcp—f - <[T3_”rp—j’ T;‘rp—j] eizn([T;ip_j,T}ip_j])’ [F;"rp—i’ IF;rp—j] ei2n<[F;iP—f']F}ip'j])>

,Jj = 1,2, then

L WSS (Fopoy) >SS (Fopoz) = Fepoy > Fepozi
2. IS (Frpoy) < ST (Frpoz) = Fopoi < Fepai
3. IS (Fpy) = S (Fpz) =

1) WHY(Fpoy) > HY (Frpy) = Fopoy > Fepoas
2) WHY(Fepoy) <HY(Fppoy) = Fopoy < Fepas
3) HHY (Fepy) = HY (Frpoy) = Fepo1 = Fepa-

4. Einstein Operational laws for CIVPFNs

Certain scholars have elaborated numerous t-norm and t-conorm, but Einstein t-norm and t-conorm have
received extensive attraction from researchers. The main idea of Einstein t-norm and t-conorm are elaborated

below.
1

2 2\5
S(a,b) = (=55), T(a,b) = ———— (15)
(1+(1-a?)(1-b2))2

By using these laws, Wang and Liu (2020) were utilized the Einstein operational laws in the environment of
intuitionistic fuzzy geometric aggregation operators. The principle of Einstein laws is also utilized in the
environment of intuitionistic fuzzy information aggregation was elaborated by Wang and Liu (2012).
Keeping the supremacy of the elaborated laws, Garg (2017) explored the principle of generalized
Pythagorean fuzzy geometric aggregation operators based on Einstein laws. No one explored utilized the
principle of Einstein laws in the environment of complex interval-valued intuitionistic and complex interval-
valued Pythagorean fuzzy sets. To improve the quality of research works, in this study, we explore some
operational laws by using the Einstein laws and discussed their important results.

Definition 3: By using any two CIVPFNs

Fep-j = ([T;rp—i' 'Il";grp_j] eizn([ﬁw—jm;ip_j])’ [F;Tp—j'm;rp—f:l eizn([m;ip_j‘w;i”_j])>’f = 1,2, then

-2
T
Fip—1

1 =
5 2 2 z
2 [+ +
i2 ip—2 T Tip—1+T Fip—2
1 1 M\ GrE T2 Nty 17
_2 _2 = +2 42 2 ip-1- Fip—2 Fip-1" Fip-2
(T Trp—1+1r Frp-2 >2 <T 7’rp—1+T Frp-2 e P P
)

+T7%,

—2 2 " " ’
1+T 7"rp—1T Frp-2 1+T Trp—1T Frp-2

:Fcp—l &) Tcp—z = (16)

Fr,,_,Fz Fa Fo o
Frp-1" Frp-2 Fip—1 Fip—2 Fip—1 Fip-2

1, 2@
(1+(1_]F_§’rp—1)(1_]]:_72’rp—2))2 (1+(1—1F‘§~ip_1)(1—W—§-ip_z)> (1+(1—1F+32fip_1)(1—“7+32fip_2))

+ +
]FTrp—llFrrp—z

(1+(1_]F+;rp—1)(1_w;'rp—2))

Bl
NIs

N
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[ T;W—lT;TP—Z T ‘-l iZn'( T;ip—l-lr;ip—z - T}ip—lT;ip—z . \‘
(1+(1_T_%”’_1)(1_T_%rp_2))2 e \(“(I'T_%ipq)(l‘r%ip—z))z(1+(1_T+;ip—1)(I_w;w-z))z/
T;TP—IT}TP—Z | ’
1
:Fcp—l ® :Fcp—z = ,(1+(1_T+érp—1)(1_']r+;rp—2))2J (17)
1 1
o izm [( W_%ing_iip—z )i < [F+§“i12rz—1+"7+§;ip—z )2]
]F_%rp—l‘HF_%rp—Z 2 ﬂ:+;rp—1+JF+§-",-p_z z l T 2 i 1+]F+ﬂp—1]F+T'ip—2 J
(1+F_%rp—1ﬂ:_%rp—z) ’ 1+JF+;rp—1JF+;rp—2 €
[ ¥sc Vsc %]
|<(1+T_%1p—1) _(I_T_%ip—l) )
¥ v
. i (1+T %:L'p—l) SC+(1_T_%1p—1) %
v Wsc\ 2 1
|[<(1+T %rp—l) SC_(l_T_%rp_l) SC)Z -i (lw ;Lp—1)¢sc_(1_'[r+;m 1)wsc ’
1 ’
1’[) 7 _ | (1+T szrp—l)wsc—(l—']r*';'rp—l)wsc ’ | (18)
SCY cp-1 l (1+T+;rp_1)¢sc+(1_T+;rp_1)'PSC J
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1.| i2m| | T = 7| |
_ wsc (o ¥sc\2 H B
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e
1
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1w [ ]
O |l |
. wsc ¥sc\2 r I
e I U (Nt N e (G M T W o'
@2r+¥se ’
1
(218, ) (25, ) ™)
[ 7]
FYs = (1) )" (19)
2 Ysc 2 Vsc
. i (1”: Tip—l) +(1_F Tip—l)
P Vsc\ 2 :
<(1+]F_;:7'17—1) SC_(l_]F_;:TP—l) SC)Z (“'“ﬁ';-'zp—1)w$c_(1_h7 }_lp_l)¢SC ’
P P )
() (0 ) | [\ )R, ) |
((Hw;,p_l)‘”“_(1_r;,p_1)‘”“)5
(4%, ) (154, )
Theorem 1: By using any two CIVPFNs
_ iZn([”ﬂ“_. T ]) _ i2n([1}‘_. FE. ]) . .
oy = <[TTW—1” T;Erp—i] € Tl []Ffrp—j’ IF;r:rzu—f] € T J =12, with Ysc—j»

Tcp—l ® Tcp—z = Tcp—z &® :Fcp—l;
:Fcp—l 7 :Fcp—z = Tcp—z S :Fcp—l;

Y .
(TCp—l ® Tcp—z) = Tcllzjii b Tcﬁicw

IpSC(Tcp—l ® :Fcp—z) = 1/)SC:Fcp—l ® 1/)SC:Fcp—z;

:Fclgs_clq o) Tclzic;—z — _f};vclgicl—ﬁll}sc—z;

Ysc-1Fep-1 @ Ysc—2Fep-1 = Wsc-1 + Ysc—2)Fep-1,
Ysc- *

(Tclﬁfﬁ'l) sc-2 _ Tc(z:p—sf_l Ysc-2) :

¢SC—1(¢SC—2Tcp—1) = (Psc-1 * wsc—z)Tcp—r

© N o0 0w DdPES
@D
>
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Proof: By using any two CIVPFNs

Fop, = ([Tﬂ_frp_,-' T;rp_j] ei2n(['ﬂ"¥ip_j,'ﬂ’;ip_j])’ [F;‘rp—j’ ]F;;rp_j:I eiZﬂ([F;’ip—j‘F;’ip_]’])> =12, with ge_;,
we will prove that the (1), (3), and (5), other is similar.

1. By using the Eqg. (17), such that
Tcp—l ® Tcp—z
- L [ ] }
2 2 1’ . |{ jrip—1']r7:ip—2 T;ip—l']r;ip—z \I
vl | T I||
=2 o2 5 5
(1 + (1 T Trp—l) (1 T ?rp—z)) . \ku(l—r—%ip_l)( —T—éip_z))z (1+(1—1r+§ip_1)(1—11‘ %ip_2)>2j/
+ + ’
T?rp—1’]r7"rp—2
1
— 2
= _(1 + (1 - 1r+§rp_1) (1 - 1r+§frp_2)) |
1 2 2 :
—2 —2 2
1 1 lZﬂ([( F Fip-1 Fip-2 )2 < ]F+Tip 1+]F+T”’_2 ) h
—2 -2 2 2 2 z F~% _ F 2 \14F+5 Z
( F Trp—zl +F Tzrp—z >Z’< IF+7‘"rp—21 + [F+7‘"2rp—2 ) e \ll T T e\ i P i Jl/
1+ ]F_Trp—llF_Trp—Z 1+ IF+7:TP_1IF+5.~TP_2
T;”"ZT;”H / T, Tx T * h
17| .| Fip—2 Fip-1 Fip—2 Fip-1 |
o ! | I 1| |
a2 o2 5 5
(1+(1-m Fo-s) (1T o)) | stert a3, ) (078, 05, ) )
T}"rp—z Frp-1
1
S+ (-, L) (-1, L))
|[ F2 -2 2 F*2 4 F+2 %]|
T I I e ]
IE:_3"'r1a—2 + IF_Trp—l 2 IF+Trp—2 + IF+Trp—1 2 | 1+]F_Tip—2 _Tip—l 1+F+TiP—ZIF Fip-1 |
) e
1+F %, F% 1+ 1F+;TP_ZIF+;W_1
= Jep-2 &® :Fcp—l
2. Straightforward.
3. By using Eqg. (17), such that
Tcp—l ® chp—Z
T;rp—lT;rp—z = T= T* T*
| ion Fip—1 Fip—2 ; Fip—1 Fip—2 .
2 2 2 T I
(1 + (1 T T”’_l) (1 T ?T”_Z)) e <1+(1_T_%p 1)(1 T_%ip—z))z (1+(1_T+;ip—1)(1_']r+;ip—z))2

+ +
TTrp—1Tfrp—2

1

2
= _ m+2 _ 42
,(1 + (1 T Trv—l) (1 T TTP—Z)) |
: 2
-2 -2 2 [+ +
1 17 iom F Tip—l'”F Fip—2 P rip 1t Fip_p
_2 -2 3 +2 +2 2 14F-2, F 2, \1+F+2, F+2
( F Frp-1 +F Frp-2 ) <]F Frp-1 +F Frp-2 > e l Fip-1" Fip-2 ip-1- Fip-2
2 2 , 12 12
1+F jl'3’10—1[F Frp-2 1+F :F'r'p—lIF Frp-2
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| )

2 o 2TE |
(2) TT!p 1T7:1p 2 @) TTip 1TTip -2 |
1

(2 %, 1)(2 T3, )* >7<(2 “T*,_y ) (2T, 2)+>7J |

1
(Z)ZT?rp—lTTrp—z

sl

(2)§T;rp—1’]r;;rp—2

(s )

- <(1 +F %, )(1+F%, ) -(1-F%,,)
) ) )

(1 + F-2

Frp-1

)

(
||
1211:!
\

T—le 1 T—le 2) (T Fip- 1)(T Tlp—z)

1+ F+2

(st )

Frp-1 Frp—2 Frp-1 Frp—2
1
[ s N (s P (E P\
i211:| (1+]F_%1 1)(1+]F_%ip—2)+(1_ _%ip—l)(l_IF_%ip—z) 1'|
(1+]F ;ip—l)(l-'—ﬂ: jZ:ip—z)_(1_]]:4—;'111—1)(1_]?'—;%11—2) g
(i, )17y, )+ (1, ) (-5, ) ) |

By using the
(1 + IF_}"W 1) (1 + IF_fTv )'b_ - (1 B F_%rp—l) (1 B IF_;’TP—Z)’ T =Ty, T, d” =

(2 T3, 1) (2-1%,.,)at =(

F'h,,).ct =T T dt=(2-1% )(2-T*,,) ad a'=(1+F% _)(1+
F ) b = (1-F 3, (

T_%iU—Z)’a (1 + IF+T!1J 1) (1 + ]F+;ip—2)’b+’ = (1 - IF+;ip—1) (1 - ]F+;ip—2)’C+, -
Tf, TH, ,d" =(2-T*, ) (2-T*, ) then

1 1
(2.¢c7)z (2.c*)z
(d-+c)E (d* + etz

offet )

(a="+c=")? (d+ e )

:Fcp—l ® Tcp—z =

N

1
2

) ~'+p~’ + i pt!
a”+b” 2 (a* + b* : lznl(z"—b") '<Z+’—b+'>
(a‘—b‘) \at—p+) |©
1 Nz
| |2 ()
. (d"+c—’)7(d+’+c+’)7

Then by using the ETN and ETCN, we determine
a”'+b’
()

Ysc

2.0 (2.cM)z
d-+c)2 (d* +c)z

1 1
(a‘ + b‘)i at +b*\2
a-—b~/ "\a* - b+

(Fep-1 ® :Fcp—z)wsc =

N[
N[

! !

. at +b*t
i2m \—F—
at -pt

e
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L 1 Ysc L N Ysc
(2)2 <7(2'C L 1> 22 <7(2'C i 1)
(d=+c)z (d* + ¢
1\2 Ysc 1 \2 Psc %’ 1\2 Psc 1\2 Psc %
, _( 2.c0)2 1) s ( @2.c)? 1) , _( @2.ct)? 1) . ( (2.c*)2 1)
| d+c)2 (d=+c)2 (d*+c*)z (d*+c*)z |
¥sc
1\ ¥sc 4! 3
(2)§/< (Zc_ )71> \| (2);/ (Z'C ) 1\| \i
et ) el )
1\ 2\ ¥sc 1 2\ ¥sc\ 2 X 2, ¥sc X 2, ¥sc\ 2
(el o) ) echl)
. (a~"+c7") (a="+c7") / k \(d+ A )5 / \(d+ et )E/ / / )

i2m|
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(2.c"1’bsc)2

(d_rll)sc+c_:¢sc)

Ne

[
|
¥714 | T
|l <d+ﬂl’sc+c+/¢sc>2

1

1 ey

2. ¢~ ¥sc)2 2.ct¥sc)?
(2.c7%s) ( ) e

1!
l(d—llisc+c—1psc)5 (d+1/Jsc+C+1/Jsc)EJ

1 1
a-"¥sc p—1¥sc\2 a+r¢sc+b+r¢sc 2]
+I¢SC_b+ﬂ/15c ]

1
(a—wsc+b—wsc)§ <a+¢sc+b+1ﬁsc

a-¥sc — p-¥sc | '\ g+¥sc _ p+¥sc

1 i27r[
>2 [ q-"Psc_p-1¥sc)’ a
e

1 1
sm-¥sc m-¥sc sm+¥sc m+¥sc
@25, T 5y, @2T 5, T 7y,
1’ 1
2 Ysc 2 Ysc 2 L2 Ysc L2 Ysc 2
(Z_T y'"rp—l) (Z_T Trv—Z) + (Z_T T'rp—l) (Z_T TTP—Z) +
Ysc Ysc Ysc Ysc
_2 _2 2 2
(T Trp—l) (T TTP—Z) (T+T'rp—1) (T+T'rp—2)
I 1 Ysc Ysc 1 0 P l
S - S ¥sc sc
i2m @ Fipoa ™ Fipoa T @21 iy T Py T ‘
| _ Ysc _ Ysc \2 2 Ysc 2 Ysc \2| |
I <(2 jZ:lp—l) (Z_T %ip—z) +> ((2_T+Tip—1) (2_T+Tip—2) +> |
_ ¥scy, Psc 2 Vscy .2 Ysc
o W ), L) () (5" )]
= 1 _
= Ysc = Ysc _2 Ysc _2 Ysc\ 2
(1+F%,.,) (1+F%,.,) -(1-F%,.) (1-F%,.)
2 Ysc 2 Ysc 2 Ysc 2 Ysc |’
(1+IF Frp 1) (1+IF Trv—Z) +(1_IF T'rp—l) (1_IF T‘w—l)
1
Ysc Ysc PYsc Ysc\ 2
(1495, (495, ) (1205, ) (-5,
Ysc Ysc Ysc Ysc
2 2 2 2
(1 + IF+TTP—1) (1 + ]F+frp—2) + (1 - ]F+frp—1) (1 - IF+Trp—2)
1
_ ¥sc _ Ysc _ Ysc _ ¥sc\ 2
((1+IF g:ip—l) (1+]F g:ip—z) _(1_]F g:ip—l) (1_]1: g:lp—z) >
_ ¥sc _ Psc _ Psc _ Psc
i2m (1+]F g:ip—l) (1+]F g:ip—z) +(1_]F g:ip—l) (1_]1: g:ip—z)
1
2 Ysc 2 Ysc 2 Ysc 2 Ysc\ 2
<(1+]F+71p—1) (1+F+71p—2) _(1_F ]:ip—l) (1_]}: ]:lp—Z) >
2 ¥sc 2 ¥sc 2 ¥sc 2 ¥sc
e (1+]F+]:ip—1) (1+F+Fip—2) +(1_]F+Flp—1) (1_F+Fip—2)

Further,
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( @S \
T
l ] ! ((2_T_%ip—l)wsc+(T_%ip—1)wsc>z !
(2)2']1‘—$SC i2n| ) |
o -, @2r+pSC |
2 Ysc 2 Ysc\2 1
(=13, )+ (T3 ) | (ertpestes, ) )
1 )
()2T*55
1
Ysc PYsc\2
j:l/}S — | ((2 - T+;“rp_1) + (T+;Tp—1) ) ]
cp—1 1
(1 + F_% )I[Jsc _ (1 _ ]F_% )IIJSC 2 12 (1+]F_72crp_1) SC+(1_IF_72Drp—1) NA 1
rp-1 -1 P, Y z
1+ F-2 Ysc 1 _ -2 Ysc |’ (1+1F+§’rp—1) SC‘(l—IFJr;’rpﬂ) %\?
( + Trp—l) +( - Trp—l) e ! (1+IF+¢rp_1)¢SC+(1—IF+3-r,,_1)¢SC
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(1 + IF-'-;TP—l) B (1 B IF+72:rp—1)
Ysc Ysc
(1+F%,.)  +(1-F%,.) |
[ 1 1]
r 1 1 izﬂ/i (2e7)" T (Z.Cﬂ)z 1i\l
et @t | et i)
1’ 1 ]
=1 1(d{ +c1)2 (df +¢1)2
1
I 1 17 ., |(ah+bh 2 ath+b*i)?
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¥
1
P ¥sc\2
- () Oe(1,,)")
(2)zT iSC i2m )
Tp—2 -, (2)§T+$;C_Z
2 Ysc 2 Ysc\2 I
((2 -T Frp 2) + (T frp—z) ) . <(2—']I‘+;:ip_2)wsc+('ﬂ"+§-‘ip_2)¢sc>z/
1 ]
(22T*55C
1
9 Ysc 9 Ysc\2
F¥sc _ ((2 B T+T7‘P—2) + (T+Trv—2) ) |
cp-2 1
((1_'_“:_%”0_2)wSC_(l_H:_éip_z)V’SC)z
. P P
Ysc Ysc % . (1+]F_]2:ip—2) SC+(1_]F_§:ip—Z) 5
(1+F%,,) -(1-F%, ) i2m .
Frp-2 lp Frp—2 , (1+]F+;' ) )¢SC_(1_IF+; . )11156 z
9 sc 9 Ysc ip-2 ip-2
(1 +F T"P—Z) + (1 —F Trp—2> e (1+1F+§ip_2)¢5C+(1—1F+§lp_2)wsc
Ysc Ysc\ 2
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Ysc Ysc
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e
/I (2c")2 Zc 2 2 ]I\I
[ 1 1 1
(2.¢7)2 (2.¢7)2 \(d 2+C_2) d+2+C+ ?b
1’ 1
=11z +¢3)2 (dF +¢7)2
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- 1 1 om (a b+b~) )7(a+;+b+;>2
a; +b;\Z [af +bf\? 2=b73) \at;-b+}
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Ysc , _ Psc _, B Ysc _ Ysc ,
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@pTise 1ge @ T
L 1
(2 B T_;rp_l)lﬁsc (2 B T_jzrrp_z)llﬂsc + 2 (2 B T+;rp_1)wsc (2 _ ,H.+jzcrp_2)1/}sc 2
(T_;rp_l)lﬁsc (T_;rp_z)llﬂsc (T+;rp_1)ll»'sc (T+;rp_2)¢sc

ml( O L rTrise prise Wl
T 1
((2_T_%ip—l)wsc(z_T_%ip—z)wsc+>2 ((2_T+72”ip—1)wSC(Z_T+72”ip—2)¢SC+>Z ‘
o W\ 3, )"0, () 30" ) )]
= 1 _
Ysc Ysc Ysc Psc\ 2
Frp-1 Frp—z - —FE,, —FF,,
(+F%,) (+Fh,,) -(-F,.) (1-F%,.)
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(1 + IF-'-;TP—l) (1 + IF+72:W—2) B (1 B H:+;TI’—1) (1 B IF+;7’I7—2)
Psc Psc Ysc Ysc
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< 1-{-]F_jzsip—l Vs 1+]F_72:ip—2)¢sc_ 1_]]:_72:i1)—1)1p5(: 1_]F_52:ip—z)wsc>z
P P P ’
i2m j2:1'p—1 jZ'Hl'p—z) SC+ _]F_jz'—ip—l) 5 _]F_jz'—ip—z) 5

2 ¥sc 2 ¥sc 2 ¥sc 2 ¥sc
< 1-'-]I'“'-y:ip—l 1+]F+Tip—2) B 1_]F+Tip—1) 1_]F+Tip—2)
2 ¥sc 2 ¥sc 2 ¥sc 2 ¥sc
e 1+]F+Tip 1) (1+]F+Tip—2) + 1_]F+sz—1) 1_]F+Tip—2)
¥sc _ Psc Ysc
Hence, (Fop—1 ® Fep—z) = Fpl§ ® Fp%5.
4. Trivial.
5. By using the Eq. (19), such that
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The result is proved.

5. Complex Interval-Valued Pythagorean Fuzzy Einstein Geometric Aggregation Operators

In the previous section, we explored some Einstein laws by using the CIVPFSs. The goal of this study, by
using the elaborated laws, we explore the CIVPFEWG, CIVPFEOWG operators, and utilized their special
cases.

Definition 4: Let F,,_; = <[’]1‘;Tp_j,qr;rp_j]eiZn([TEm—j'T}m—j]), [F7,, . IF;;rp_j]elznqu P ,])) j=

1,2, ...,my, be a collection of CIVPFNs weight vector Q = {Ql, Q,, ...
Then the CIVPFEWG operator is initiated by:

CIVPFEWG(F g1, Fepss ) C,, o) =@M (F ( L) (20)
If we fixed the value of Q; = E for all j, then the CIVPFEWG operator is converted for complex interval-

O, } with a rule that is ¥7%4 Q; = 1.

valued Pythagorean fuzzy geometric (CIVPFG) operator such that

'Tcp—lmze) = ( ® (Tcp 1))%

Theorem 2: Let F,,_; <[’ﬂ‘?m T ]]elzn([%w . [[F;rp_j,]F;rp_j]e"Z"([FJ:'ip—j'[F;ip—jD),j -

CIVPFG(Fep—1, Fepz, - (21)

1,2, ...,my, be a collection of CIVPFNs weight vector Q = {Ql, Q,, ...
Then by using Eq. (20), we determine

O, } With a rule that is 7% Q; = 1.

)¢SC—1+’IJ$C—2>2

)¢sc—1+¢sc—z
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CIVPFEWG(F - 1,Tcp 20 s Fepmpp) =

e
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Proof: By using mathematical induction, we prove Eq. (22), for this we choose m;, = 2, we determine
CIVPFEWG (Fop_1, Fop—z) = Foply ® Firly

By using Eqg. (19), we know that
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We assume that Eq. (22), is true for m;, = k, such that
CIVPFEWG(Fp—1, Fep—2, - » Fep—ic)
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Therefore, Eq. (22) is also true for all values of m,,.
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Further, by using the information in Eq. (22), we discussed some properties for elaborated operators such as
idempotency, boundedness, and monotonicity.

Property 1: Let Tcp—j = <[’]I‘;rp_j_’]r;§rp_j] eizn([T;ip—j‘T;ip—j]), [[F;rp—j’IFJi‘rp—j] eiznqﬁiz}—j’ﬁ;w—j])),]‘ =

1,2,...,m;, be a collection of CIVPFNs weight vector Q = {Q,Q5, ..., Oy, } With a rule that is X724 Q; = 1.

fFep-j = ([T? ,TF, ] elzn([mﬂp ol [IFT ,F, ] on{[% 7)) ) then
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Property 2: Let F,_; <[TTrp _j ']I‘?rp ]] elzn([TT'm }T ip- } [[Ffrp o IFTrp 1] eiznqﬁiz}—j’ﬁ;w—j])),]‘ =
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1+ F+2 - 1+ F+2 - 1+ F+2

j=1 Qj

]:1 TTP )max ] T rp— j ] TTp ]mlTL
e (. : l
1-F*2 Lt me g gz N g2 Ejs
PN er jmax < 1_[ 2rp j < er j,min
1+IF+Trp —jmax 1+F+Trp —j 1+F+Trp —jmin
+ + @ +
c><1_H—:?‘rp )max) (1_FTrp ]> <<1_]Ffrpjmm>
2 2 = 2
1+ ]F+frp —jmax 1+ ]F+Trp —j 1+ ]F+frp j,min
my Q;
2 S(1-Fg N\ 2
“\1¥r2 =i+ 1+ F+2 S\1+F2
Frp-jmax j=1 Frp-j Frp—jmin
J
1 1 1
=3 < o =
( : )
2
Trp j 1+IF Trp —jmax
2
o1+ F*% < <1+F*;
rp—j,min Q; rp—jmax

—2 B Mie 1- IF+;‘TP—J' '
1+F+;:rp —jmin 1+Hj=1 1+IF+2 s

: o
rp—jmin 1— IF+2

nge Frp-j

1+11; (7

1 2
J=1\1 + ]F+Trp y
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Q Q
Mie +2 7 yyhie _ mt2 )
o Ft2 Hf:l (1 +F Frp 1) H1'=1 (1 F :Frp—j) < F+2
Trpimin = Hm1 : (1 + F+2 )Q] + H]m ‘ (1 F+2 9 = 7 Frp-jmax
j=1 Frp-j j=a\ M T frp—])
1
Q; Qi\ 2
m, +2 J m +2 ]
o (maeE, ) ms (oe, )
& Frpmjmin nge 42 Qj nye .2 Qi | =% Frp—jmax
5 (1 +F Trp—j) +11,5 (1 —F Trp—j)
And similarly
1
Q; Qi\ 2
Mo (L4F5, ) s (-F3, )
Frp-jmin = nge _ Q; nge _2 Q; <F Frp-jmax
H (1+IF?TP J) +H1’=1(1_IFTW—J')

Similarly, we will determine the imaginary part of the FG, such that

.
Py I (1 + G, j)ﬂf _ Hj?llel( F*7, ,)zj>2 <
e (14 F+%, j) +117 (1 ]F+f~.m )’ 1

_ M (1+3,.)" - 1175 (1- 7 3, )) .
Hosimin e (1453, )"+ H““le (1 -F2, )" psimas

—VYel

Similarly, by using another decreasing function g(y,;) = then g’ (yo1) = R 2 then we will find the value

of real and unreal parts of the TG, such that

_ﬂ'
)2 5Ty, )
Frp—jmin = Q 1 =T Frp-jmax
e — Ne IAY
(H (2 T frp J) +H ( Trp 1) )
(2)7 H?lel T+Trp - +
Frp—jmin = Q 1 =T Frp-jmax
Mie +2 N +2 IAY
(H (2 T 1) +II;2 (T Frp- 1) )
And
B (2)2 I T‘Tfp y .
Fip-jmin = Q 1 =T Fip—jmax
e - Mg 7\?
(H (2 T3 ftp 1) +11;2 ( ftp 1) )
. (2)2 H]mle T+Tip S .
Fip-jmin = 1 =T Fip—jmax
2

me 2 me 2 Qj
(M (2-13,,) " + s (143,.,)”)
Then, by using Eq. (13) and Eq. (14), we easily determine the required result, such that

Fip < CIVPFEWG(Fep—y1, Fepz, e :Fcp me) < F

Property 3: Let F,_; <[TT7‘p _p Tfrp ]] lZTT([T}"zp ,Tﬂp -j [IFf ]FTrp ]]ei27T<[]FJ:-ip_j-F;ip—j])>’ j=

1,2,...,m; be a collection of CIVPFNs weight vector Q = {Qy,Qy, ..., Oy, } with a rule that is 7% Q; = 1.
If, Fep_j < Fep—;j then
CIVPFEWG(Fep1, Fepzs s Fepomy,) < CIVPFEWG (F 1, Fip—zs oo Fipomy,) (25)

Proof: Straightforward.
Definition 5: Let Fg,_; = <[T;Tp—j'T;rp_j] eizn([TﬁT’ip—j‘T;ip—j]), [F;Tp_j,]}?;rp_]_]ei2"<[F%ip—;'F$ip—j])>, j=

1,2, ..., m;, be a collection of CIVPFNs weight vector Q = {Qy,Q,, ..., Qp,, } With a rule that is Zj“’el Q=1
Then the CIVPFEOWG operator is initiated by:
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CIVPFEOWG(Fep—1, Fop-2, s Fopmy,) =®1 (F ( - om) (26)

Where O(j) is expressed the permutation of (] =1,2,..,m) with arule that is 0(j) < 0(j — 1). If we fixed

the value of Q; = [mi for all j, then the CIVPFEOWG operator is converted for complex interval-valued
le

Pythagorean fuzzy ordered geometric (CIVPFOG) operator such that

L
CIVPFOG (Fep—1, Fep—2r » Fepny,) = (®j¥“§; (Tcp_o(j)))‘“‘le 7)
Theorem 3: Let F.,_; = <[’ﬂ";rp_j, T;Tp_j]eizn([T;ip‘j'T;ip—j]), []FJ:_TP_},,]F;W_J,]ei2"<[F5ip—erF¥ip—i]>>, j=

1,2,...,m, be a collection of CIVPFNs weight vector Q = {Q;, Q,, ..., Oy, } with a rule that is 31714 Q; = 1.
Then by using Eqg. (26), we determine
CIVPFEOWG(Fep-1, Fep—2s » Fepomy,) =

[

‘mle - ] ““le + Q; ]
2 2 2 2
I @2 H Frp-0(j) @2 H Frp-o0()) I
1 1
Q. 94 E n. n. 7
1"11 -2 J | M1 _2 J Mg (., _m+2 J e (42 J
l( 2T o) (T Rpm0n) ) (M2 (2142 0p) LT, 00) )|
( \
‘mle — } ““le + 1
22 e T z e T
i2n| @ H Fip-o() @ l'l Fip-0(j) |
| z 7| |
n- Qi\2/ p Qi\2
e, _p-2 e J < le (2-T+ +1'[ e J)
\{<nj=1<2 T Tip-o(j)> = ( Fip— 0(1)) > ftp 0(1)) L(r5 Fip- 0(1)> JI/
e , (28)
[ Q 2 Q Q 1]
nge —2 J_mie z ‘mle J_Mie (; 42 7\ 2
(48 o) I 1(1 F % ou) (“ Frp-op) TG (-F % 0() ) |
n. ﬂ. n,
my 2 J my e ] We (o _m+2 J
[ M (7 o)+ (7o) S (484 op) HILE (14 o) j
|[/ Q; Q; % Q; Q; %]l
Mg -2 J_r™e({_p-2 1\ Nie +2 T _rMe (| _pt+2 ]\
i “j=1(1"]F fip—o(j)) szl(1 F Tip—o(j)) | = A Fip- O(j)) nj=1(1 F Tip—o(j))
mpe (2 Y ome( o Y n".“le(1+rF 2 )ﬂj+1'[“.“le(1—w+;2; )ﬂj
| M= Fipogp) M= Fip-o(p i=1 ip-o(p) =1 w-o) /|

e
Proof: Straightforward.
Further, by using the information in Eq. (28), we discussed some properties for elaborated operators such as
idempotency, boundedness, and monotonicity.

Property 4: Let F,,_; = <[T9_”rp_j' T;Tp_j] eiZ”([T;ip—f‘T;ip—j]), [IF; _ ]F;Erp_j] ei2"<[F;ip—j']F;ip—j])>, j=
1,2,...,m; be a collection of CIVPFNs weight vector Q = {Qy,Qy, ..., Oy, } with a rule that is 7% Q; = 1.

If Fep_j = (['Jl‘f ,T%, ] eiZ"([Tf:‘ip'T;zp]), [[F;rp, IF;rp] eiz"([FT‘ip’[FTtp])) then

CIVPFEOWG(TCp_l,iFCp_Z, s Fopemy,) = Fep (29)
Proof: Straightforward.

Property 5: Let F,,_; = <[T9_”rp_j' T;Tp_j] eiZ”([T;ip—f‘T;ip—j]), [IF; _ ]F;Erp_j] ei2"<[F;ip—j']F;ip—j])>, j=
1,2,...,m; be a collection of CIVPFNs weight vector Q = {Qy,Qy, ..., Oy, } with a rule that is 7% Q; = 1.

([minj T}rp_j , min; ']I‘;Erp_j] eizn([minf T p— ™0 T’t'ip—jD, [maxj IF;rp_j , max; IF;Erp_]_] eim([maxj FFip-y ™) ]F;ip—f])>

and

=

([maxj T7,,_; »max; T}.rp_j] eizn([maxﬂr;i - Tflp - [mm Fz,,_;»min; lF}pr_}-] eizn([minf[F;i _ymin Py, 1]))
, then

Foy < CIVPFEOWG(Fop—y, Feps s Fopony,) < Fi (30)

Proof: Straightforward.
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Property 6: Let j:'cp_]. = ([T;rp—j' ’]I‘;Tp_j] eiZﬂ([T;ip-j‘T;ip—jD‘ []Fg—_,rp_j, I[:‘;rp_j] eiM([FEiP—j'Hm—j])) ,j =

1,2, ..., my, be a collection of CIVPFNs weight vector Q = {Qy, Q,, ..., Qg } with a rule that is 372 Q; = 1.

If, Fep_j < Fep—;j then
CIVPFEOWG(Fep-1, Fep-2s -e» Fepomy,) < CIVPFEOWG (Flp_1, Fép—as oo Fepomy,) (31)

Proof: Straightforward.

6. MCDM based on Proposed Operators.

Certain individuals have utilized the theory of aggregation operators, measures, and methods in the
environment of IFSs, PFSs, IVIFSs, IVPFSs, CIFSs, CIVIFSs, CPFSs, and their application in the MCDM
technique to determine the consistency and dominance of the prevailing works. But up to date, no one
proposed the theory of CIVPFSs by using any kind of operators and their application in the MCDM
technique. The goal of this manuscript is to utilize the Einstein geometric aggregation operators based on
CIVPFSs to determine the dominance of the elaborated works. For this, we choose the group of alternatives
Fai—1,Far—ps e Fa_n and their attributes Fyo_q, Far_z, ..., Farm cCONCErNing weight vector Q =
{01, 9, ..., Qy,, } with a rule that is 371 Q; = 1. To evaluate the above issues, we construct the decision

matrix whose very items are in the form of complex interval-valued Pythagorean fuzzy numbers such that
. — + . — +
:Fcp—f = ([T;rp—j’ T;rp—j] elzn([TTip_j,TTip_j])’ [[F;rp—j’ IF;':rp—j] elznqﬂ:fip—j’wﬂp_j])) 'j = L2 e with

some rules that are 0 < ’H‘;rpz(xel) + ]F;Erpz(xel) <10< ’H‘;ipz(xel) + [F;tipz(xel) < 1. Then by using the
above family of n alternatives and m attributes, we developed the algorithm whose steps are as follows:

Step 1: Develop the decision matrix, whose every item in the form of CIVPFNs.

Step 2: By using the CIVPFEWG operator to aggregate the entries of the decision matrix.

Step 3: By using the score function, we find the Score values of the aggregated values of Step 2.

Step 5: Rank all alternatives and examine the best one.

As shown above, we illustrate certain numerical examples to determine the consistency and validity of the
elaborated operators.

Example: With the quick advancement of monetary globalization, and the developing undertaking rivalry
climate, the rivalry between current ventures has become the contest between supply chains. The variety of
individuals burning through is expanding, and the new item life cycles are getting more limited. The
instability of the interest market and from outer elements drives endeavors for viable inventory network mix
and the board, just as essential partnerships with different ventures to improve the center intensity and oppose
outside hazard. The critical measure to accomplishing this objective is provider choice. Hence, the provider
choice issue has acquired a great deal of consideration, regardless of whether in respect to inventory network
the executive’s hypothesis or real creation the board issues. To delineate our proposed technique in this
article, we give a mathematical guide to choosing green providers in the green inventory network the
executives utilizing CIVPFNs. For this, we choose the family of five possible green suppliers in green
supplier chain management Fy;_1, Fai—2, Fai—3, Fai—ar Far—s and their attributes are in the form of selection
experts whose expressions are followed as:

Far—1: Expressed the product quality factor.

Fa:—,: Expressed the environmental factor.

Fa:—3: Expressed the delivery factor.

Far—4- Expressed price factor.

To determine the above troubles, we choose the family of weight vectors such that 0.3,0.2,0.3,0.2, Then
by using the above family of n alternatives and m attributes, we developed the algorithm whose steps are as
follows:

Step 1: We developed the decision matrix, whose every item in the form of CIVPFNs is discussed in the
shape of Table 1.
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Table 1. Original decision matrix covers the complex interval-valued Pythagorean fuzzy numbers.

Far-1 Far—2 Fai-3 Fat-a

TAI—I [0 4,0. 5] i21([0.01,0.2] ) * [0 41,0. 51] i21([0.02,0.21]) [O 42,0. 52] i21([0.03,0.22] ) [0 43,0. 53] i2m([! 004-,0.23]),
[01’01] i27([0.1,0.2] ) [0 11‘0.11]61271([0 .11,0.21]) [0.12,0.12]81271( [0.12,0.22] ) [0.13,0.13]61271-( [0.13,0.23])

TA[—Z [05,06] i27([0.02,0.3 ) [0 51,0.61]€i2n([0 .03 ()31]) [0.52,0.62]6"2”:([0 .04,0.32 )‘ [0.53’0.63]ei27r([0.05,0.33])‘
[02'03] i27([0.1,0.3]) [0 21,0.3 1]ei2rr([0 .11,0. 31]) [0.22'0.32]61'271'([0.12,0.32]) [0.23’0.33]61'271([0.13,0.33])

TA[—S [04,06] i27([0.01,0.5] ) [0 41,0.61]€i2n([0 .02 ()51]) [0.42'0.62]eiZTL’([0.0S.O.SZ])‘ [0.43’0.63]ei27r([0.04,0.53])‘
[01'02] i27([0.1,0.2]) [0 11,0.2 1]ei2rr([0 .11,0. 21]) [0 12,0. Zz]eiZTE([O.12,0.22]) [0.13’0.23]61'271([0.13,0.23])

TAI—AI- [01’03] i27([0.03,0.5] ) [0 11,0.3 l]eiZn'([O .04,0.51]) [O 12,0. 32]31'211([0.05,0.52]), [0.13,0.33]€i2n([0'06‘0'53]),
[01’02] i21([0.2,0.3] ) [0 11,0.2 l]eiZTE([O .21,0.31]) [0_12'0_22]eiZﬂ([0.22,0.32]) [0_13'0_23]61'27'[([0.23,0.33])

TAI—S [03’07] i27([0.03,0.7] ) [0 31‘0.71]61'271([0 .04,0.71] ) [0_32'0_72]eiZﬂ([0.05,0.72]), [0_33'0_73]eiZn([0.06,0.73]),
[01’02] i21([0.1,0.2] ) [0 11,0.2 l]eiZTE( 0.11,0.21]) [0_12'0_22]eiZTL’([O.lZ,O.ZZ]) [0_13'0_23]61'27'[([0.13,0.23])

Step 2: By using the CIVPFEWG operator to aggregate the entries of the decision matrix are
discussed below.

Fais = CIVPFEWG (Faer, Fac_ Fac—s Fac_s) = ([[?)ﬁiz 251111?]6:2(([;0252223;])))
Faros = CIVPFEWG (Fyey, Fac- Fac-s Faios) = ([[?)Zﬁz ‘;6;11?;2iﬂi‘iiiiii?ﬁ)
Fai—z3 = CIVPFEWG (Far—1, Far—2, Fae—z, Far—a) = ([[(())illiz"?)62’1112’]]?1221(([[(:)0121:15(())52112]]))‘)
Far—a = CIVPFEWG (Far—1, Fat—2, Far—3 Far—a) = ([[?)..1111155:(())._3211ii]]iizzz(([[(;iiizzllz]])),)

0.3138,0.714] e27((0.0425,0.714])
Fpros = CIVPFEWG (Fae—r, Fac—sr Fars Far—s) = ( [ ]

[0.1145,0.2 143]eiZn([0.1145,0.2143])

Step 3: By using the score function, we find the Score values of the aggregated values of Step 2, which
are discussed below.

S/ (Fy—1) = 0.1981, S (Fy_,) = 0.2420, S (Fyy_3) = 0.3473,S5 (Fyy_4) = 0.0868, S (Fy1_s)

= 0.5009
Step 5: By using the above Score values, we rank all alternatives and examine the best one such that
S (Fai—s) = S (Far—z) 2 S (Fu—z) = S (Fam1) = S (Far—a)
That means that
Fai-s 2 Far-3 2 Fa—2 2 Far-1 2 Far-a

Therefore, from the above analysis, we get the result the alternative Fy;_s is the best optimal.

In Example 1, we choose the complex interval-valued Pythagorean fuzzy sorts of information and resolve
it by using the elaborated CIVPFEWG operator. Further, to determine the reliability and dominance of the
elaborated operators, we choose some prevailing sorts of information and resolve it by using elaborated
operators to show the dominance and consistency of the elaborated works.

Example 2: (Garg, and Rani, 2019a) This theory is taken from Ref. (Garg, and Rani, 2019a), which states
that the utilization of the created approach, we delineate a model. Assume a business visionary chooses to
buy another machine for his organization from a machine creator X,,,,;. The machine producer gives data on
four models of machine (F4;_1, Far—2, Fai—3, Far—s) With various creation dates for each model and their
attributes are in the form of selection experts whose expressions are followed as:

Far—1: EXpressed the reliability.

Far—o: Expressed the safety.

Fai—3: Expressed the flexibility.

Far—4: Expressed productivity.

To determine the above troubles, we choose the family of weight vectors such that 0.3,0.2,0.1,0.4, Then
by using the above family of n alternatives and m attributes, we apply the steps of the algorithm of the
proposed work on Table 1 in Ref. (Garg, and Rani, 2019a). The aggregated results are discussed below.

[0_2554,0_4233]61'271([0.2851,0.4566])‘
[0_2051,0-3569]ei2n([0.3217,0.4842]) >
[0'2943‘0'4981]ei2n([0.292,0.5679])'>

[0.114,0.2346]2(0:1.02647D

Fur-1 = CIVPFEWG (Fue—1, Far-2Far—3 Far-a) = <

Fa—z = CIVPFEWG(TAI:—L:FAt—Zig:At—&:FAt—Al-) = <
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[0.1581,0.3055]e27([0-1379,0.2647])
[0.2225,0.5421]2n([0-1538,0.3431D),
[0.1483,0.2647]e2n([0-1761,0:4248])

By using the score function, we find the Score values of the aggregated values, which are discussed
below.

[0337,04878] eiZn([0.2858,0.5586])'
Fa—3 = CIVPFEWG (TAt—l' Fat-20Far-30Far-a) = (

Far—a = CIVPFEWG(TAI:—I'TAt—Z'TAt—3'TAt—4) = (

S (Fy_q) = 0.0134, S5 (Fuy_) = 0.2972, S (Fay_3) = 0.2689, S (F,;_,) = 0.0906,

By using the above Score values, we rank all alternatives and examine the best one such that

S (Far—z) = S (Far—3) = S (Far—a) = S (Fa-1)
That means that
Faro 2 Fas 2 Fa-a 2 Fy4
Therefore, from the above analysis, we get the result the alternative Fy;_, is the best optimal.

In Example 1, we choose the complex interval-valued Pythagorean fuzzy sorts of information and resolve
it by using the elaborated CIVPFEWG operator, and in Example 2, we choose the complex interval-valued
intuitionistic fuzzy sorts of information and resolve it by using the elaborated CIVPFEWG operator. Further,
to determine the reliability and dominance of the elaborated operators, we choose some prevailing operators
and compare them with proposed operators by using the information of Example 1 and Example 2, to show
the dominance and consistency of the elaborated works.

Certain people have elaborated on different sorts of operators based on IVIFSs, IVPFSs, CIVIFSs and
compare our results with some existing operators to determine the supremacy of their works. The goal of this
study, we determine the practicability and dominance of the elaborated operator with the help of comparison
with some prevailing operators to find the consistency and flexibility of the developed operator based on
novel CIVPFSs. We compare the proposed operator with some prevailing operators whose information’s are
follow as Wang et al. (2012) elaborated aggregation operators for IVIFSs, Haktanir (2020) initiated the
theory of aggregation operators for IVPFSs, Garg and Rani (2019) proposed aggregation operators for
CIVIFSs, and with proposed operators to examine the dominance and supremacy of the elaborated operator.
Based on the information in Table 1, the comparative analysis of the elaborated operator with some
prevailing operators is implemented in the form of Table 2.

Table 2. Comparative analysis between proposed and existing operators.

Method Score Values Ranking Results
Wang et al. (2012) Cannot be Calculated Cannot be Calculated
Haktanir (2020) Cannot be Calculated Cannot be Calculated
Garg and Rani Cannot be Calculated Cannot be Calculated
(2019a)
CIVPFEWG ST (Fp—1) = 0.1981, S5 (Fy_p) Farcs 2 Farcz 2 Faz2 2 Faq
operator = 0.2420, > Fui_a

sz(TAl—S) = 0.3473, sz(TAl—4)

= 0.0868,

SSf(TAl—S) = 05009

From the above investigation’s we know that if we choose the information in the form of complex
interval-valued Pythagorean fuzzy numbers, then the prevailing operators are based on IVIFSs (Wang et al.,
2012), IVPFSs (Haktanir, 2020), and CIVIFSs (Garg and Rani, 2019a) are not able to cope with it. Further,
we show that if we choose the information in the form of complex interval-valued intuitionistic fuzzy
numbers then the theory of Garg and Rani (2019a) can resolve it, but still, the theory of IVIFSs (Wang et al.,
2012), IVPFSs (Haktanir, 2020) are failed. Based on the information of Table 1 from Ref. (Garg and Rani,
2019a), the comparative analysis of the elaborated operator with some prevailing operators is implemented in
the form of Table 3.
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Table 3. Comparative analysis between proposed and existing operators.

Method Score Values Ranking Results
Wang et al. Cannot be Calculated Cannot be Calculated
(2012)
Haktanir (2020) Cannot be Calculated Cannot be Calculated
Garg and Rani ST (Fa—1) = 0.0023, S (Fuy—,) Fri—z = Fares = Farea = Fur—q
(2019a) = 0.1861,
sz(TAl—B) = 0.1578, sz(TAl—4)
= 0.0805
CIVPFEWG ST (Fa—1) = 0.0134, S (Fuy_,) Faiz 2 Far3 =2 Fpa = Faq
operator = 0.2972,
S/ (Fai_s) = 0.2689, S (Fur_s)
= 0.0906

As shown above, the elaborated operators based on CIVPFSs are more important and powerful than the
existing theory (Wang et al., 2012; Garg and Rani, 2019a; Haktanir, 2020) to manage inconsistent and
unreliable information in genuine life troubles.

7. Conclusion

The principle of CIVPFS is a valuable procedure to manage inconsistent and awkward information
genuine life troubles. The principle of CIVPFS is a mixture of the two separated theories such as the complex
fuzzy set and interval-valued Pythagorean fuzzy set which covers the TG and FG in the form of the complex
number whose real and unreal parts are the sub-interval of the unit interval. The superiority of the CIVPFS is
that the sum of the square of the upper grade of the real part (also for the unreal part) of the duplet is
restricted to the unit interval. The goal of this article is to explore the new principle of CIVPFS and its
algebraic operational laws. By using the CIVPFSs, certain Einstein operational laws by using the t-norm and
t-conorm are also developed. Additionally, we explore the CIVPFEWG, CIVPFEOWG operators and utilized
their special cases. Moreover, an MCDM technique is explored based on the elaborated operators by using
the CIVPF information. To determine the consistency and reliability of the elaborated operators, we
illustrated certain examples by using the explored principles. Finally, to determine the supremacy and
dominance of the explored theories, the comparative analysis and graphical expressions of the developed
principles are also discussed.

In the future, we will extend the elaborated work for complex g-rung orthopair fuzzy sets (Ali and
Mahmood, 2020), complex spherical fuzzy sets (Ali et al., 2020a), and complex T-spherical fuzzy sets (Ali et
al., 2020b) to improve the quality of the research works.
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