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 Fluid flow analysis through a bend pipe is extensively conducted in practical 

and cell separation operations. It is observed that flow behaviors in the bend 

pipe are influenced by some parameters such as curvature, aspect ratio, etc. As 

a result, various phenomena, steady solution branches, unsteady solutions, 

energy transfer are changed. In this paper, the acts of flows are performed 

together for fixed curvature, δ = 0.2, and Prandtl number, Pr = 7.0 (water). 

Here, for a wide variety of Dean numbers (100 ≤ Dn ≤ 1000) and three fixed 

Grashof numbers, Gr = 100, 500, and 1000; time-independent solutions with 

linear stabilities are investigated first where only the first steady branch 

exhibits linear stability out of two steady solution branches obtained. Then, 

different flow transitions between the required range of Dean numbers (Dn) 

and several Grashof numbers (Gr) are investigated using time-dependent 

solutions. Power spectrum density (PSD) is further revealed in order to gain a 

deeper understanding of periodic and multi-periodic flows. Flow velocity 

contours including axial flow (AF) and secondary flow (SF) and their 

temperature profiles (TP) are also exposed. The SFs reveal that two- to four - 

vortex flows are produced due to the turning of steady branch and the flow 

instabilities. Furthermore, the energy transfer between the cooled and heated 

sidewalls of the pipe is calculated. Finally, a link between centrifugal and body 

force with the energy transfer has been shown in this research which reveals 

that the fluid has merged that certainly rises the overall energy transfer. 
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1. Introduction   

Working on bend pipe flows has not only started from today but has continued from a century ago. It is 

extensively utilized in mechanical and biomedical engineering department such as fluid transportation, fluid 

amplifiers, heat exchangers, rocket engine, coil steam generators, ventilators, nuclear reactors, thermo siphons, 

human vein and arteries, tumor cells, etc. The governing equations for the bend pipe were invented by Dean 

(1927) first. He expressed that the flows through the duct had been influenced by curvature which was known 
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as centrifugal force later. On account of this, two vortex flow patterns are found and at a critical point, they are 

converted into four vortex flow. These types of the vortex are known as Dean vortex. Presently, various types 

of curved duct/pipe are used by many scholars. Some distinguished papers on curved duct are referenced by 

Mondal et al. (2006) and Yanase et al. (2005) (square and rectangular duct), Fiola and Agarwal (2015) (S shape 

duct), Anand and Sandeep (2010) (Y shape duct), Chandratilleke et al. (2013) (elliptical duct), Ferdows et al. 

(2007) (helical duct).  

There are various types of flow observations are investigated in the bend pipe. One of them is the bifurcation 

structure. Recently, Watanabe and Yanase (2013) obtained various bifurcation structures for the three-

dimensional case and found a connection between the branches. Bifurcation diagram from small to large aspect 

ratio for different aspect ratios have been also calculated by Mechane (2010). Using Euler-Newton continuation 

method, Yang and Wang (2001) pointed out the position of the symmetric and asymmetric solution of branches. 

They tried to find out the dynamic responses of the branch. A complete study on bifurcation has been performed 

by Mondal et al. (2007). Two types of bifurcation such as Holf and Pitchfork bifurcation and the curvature 

effect to form a bifurcation have been expressed by them. They further examined the transitional phenomena 

through the curved square duct for the isothermal case. For both rotating and non-rotating duct, Hasan et al. 

(2019a, 2019b) used spectral method and found out two and four steady branches in the Taylor and Dean plane 

respectively. Analysis of bifurcation in partially wetting liquids for different values of the equilibrium contact 

angle has been conducted by Lin et al. (2016). The change of bifurcation structures with respect to the electric 

parameters has been demonstrated by Lin et al. (2017) for two-dimensional inviscid and incompressible fluid. 

The change of bifurcation in multi-vortex secondary flow structures have been visualized experimentally by 

Leong et al. (2009) where they provided particle image velocimetry method. Gelfgat (2020) exposed the Dean 

and Reynold number instabilities in the steady solution for helical pipes. 

Time evolution calculations for different aspect ratios have been investigated by Mondal et al. (2013). To 

justify the oscillating flows they also visualized phase space. Czajkowski et al. (2020) experimentally narrated 

the influence of flow transition for various rotational speeds, heat flux, filling ratios through a pipe. Canton et 

al. (2016) reported unsteady flow characteristics in a turbulent channel for small Reynold nubers. Dolon et al. 

(2019) tried to detect the oscillating behavior through the curved duct with increasing the pressure gradient 

parameter. Two to ten vortex secondary flows have been acquired in their study for the oscillating flows. 

Dynamical responses of the unsteady behavior in the steady symmetric and asymmetric solution branches have 

been reported separately by Liu and Wang (2019). Arpino et al. (2015) analyzed the effects of thermal transient 

behaviors for Rayleigh number, Darcy number and aspect ratio in the porous and partially porous cavities. 

Zhang et al. (2019) guided their investigation on the flow around four equispaced cylinders to find out the 

unsteady flow characteristics with respect to two parameters including lift and drag coefficient. Unsteady 

behaviors for large aspect ratio at different points of the bifurcations have been presented by Yanase et al. 

(2002). The time-dependent behavior of the rectangular duct of aspect ratio 0.5 has been elaborated by Mondal 

et al. (2015) for different Grashof numbers and large Dean numbers. Bifurcation structures as well as the 

unsteady flow characteristics of the circular duct have been observed by Islam et al. (2019).  

Fluid characteristics through the ducts investigations play a very important role in many biological and 

engineering applications. Two-dimensional flow regimes between two square cylinders for different Reynolds 

numbers and gap ratios have been disclosed by Nazeer et al. (2019). By validating the fluid flow found by 

computational fluid dynamics with the particle image velocimetry measurements, Li et al. (2016, 2017) 

depicted the Dean instabilities in the mass and energy transfer for rectangular bend channel. Gao et al. (2020) 

depicted the isotherms and the hydraulic flow velocity behavior for the horizontal duct. Fomicheva et al. (2019) 

conducted Thomas algorithm to present the flow velocities through a funnel. Two-dimensional axial and 

secondary flow characteristics for non-rotating and rotating duct has been illustrated by Hasan et al. (2020a, 

2020b, and 2020c). They showed that the axial velocities were more affected at the rotating curved duct than 

the non-rotating curved duct. Wang et al. (2018) explained the variation of Dean vortices for different rotations 

and gap ratios in the rotating cylinder. Kim et al. (2011) showed that the fluid flow has not significantly 

influenced by the variation of Reynold number with the development of friction factor through the helical 

pipes. Bu et al. (2015) elucidated the variational characteristics of streamlines in the secondary flow through 

the curved annular ducts. Chen et al. (2020) examined the temperature distribution at different inlets in the 

presence of Joule-Thomson parameters through the helically coiled tubes. Arvanitis et al (2018) numerically 

carried out the influence between the streamlines and isotherms for several Dean and Reynold numbers. 

Soltanipour et al (2020) examined the effect of the magnetic field and entropy generation in the streamlines at 

different angles of the curved pipe. Sultana et al. (2019) presented the impacts of flow velocities and heat 

transfer in bifurcation and unsteady flow structures. 

Heat transfer calculation from the curved square duct is another important phenomenon for the researchers. 

Chandratilleke et al. (2013) offered a numerical and experimental investigation of flow-through both 

rectangular and elliptical channels with heat transfer effects. Hashemi et al. (2018) discussed the fluctuation of 
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the axial flow with the change of time through a finite length curved pipe. Rahmani et al. (2019) represented 

the isotherms contours where they employed finite Fourier transform and the method to calculate the heat 

transfer. Bhuyan and Giri (2021) analyzed the energy distribution and entropy generation of the air-water flow 

through the vertical tube where they have further shown that the second law has a significant effect on heat 

transfer. Thermal buoyancy effect and mean Nusselt number in the curved duct have been calculated by 

Mokeddem et al. (2019) for different Dean numbers and aspect ratios. Praks and Chanda et al. (2020) reported 

the change of energy distribution as well as flow velocity effects for increasing Tr for both positive and negative 

direction, where Dolon et al. (2021) conducted a nearly identical study for a non-circular rectangular channel. 

Hasan et al. (2021) illustrated the changing of overall heat flux energy for increasing Tr. Ghobadi and 

Muzychka (2015) interpreted a relation between heat transfer and pressure drops in Newtonian fluid for curved 

and coiled circular tubes. Manesh et al. (2019) analytically solved the heat transfer in composite canonical 

shells and shown it from different angles in the Heat flux vs. Mean temperature plane. The rate of heat transfer 

through the curved annular pipe with showing a connection between the friction factor, Nusselt number and 

Dean number, has been elucidated by Nobari et al. (2009). Arpino et al. (2014) exhibited the porous convection 

and the porous cavities of the flow for different aspect ratios, Rayleigh and Darcy number. Razavi et al. (2015) 

have driven the finite volume method to depict the convection in the curved rotating duct where they have 

applied the second laws of thermodynamics. Effects heat transfer in the axial flow in the inner and outer walls 

through rectangular pipe have been explained by Norouzi et al. (2011). Heat transfer effects in the Dean number 

vs. Nusselt number plane has been also detected by Mondal et al. (2017) for large aspect ratio. They also 

established a relation between the centrifugal force and heating induced buoyancy force together with drawing 

a vortex diagram. Hasan et al. (2019c, 2019d) adopted the Centrifugal and Coriolis parameter to discuss the 

cause of increasing the heat transport as well as temperature gradients in the revolving and non-revolving coiled 

tubes. They moreover pointed out the heat transfer effects in the flow transitions and the steady flows.   

Among the studies, scholars have published their paper on the bifurcation, unsteady flow characteristics 

and heat transfer separately. But it is a little hard to understand all things when a paper is related to the other 

ones. Therefore, the article aims to analyze and explain the change of flow vorticity and the energy distribution 

in time-dependent and independent solutions.  

2. Mathematical Model of the Flow 

The present study considers a flow of real fluid streaming past a revolving arrangement with semi-circular 

geometry having square cross-section. Physical geometry including corresponding notations is illustrated in 

Fig. 1. The coordinate’s x′ and y′ axes are considered as the base component and also z′ is the axial point of the 

compass. Outer and lower sidewalls of geometry are imposed with different temperatures while the upper and 

inner sidewalls remaining adiabatically isolated. The temperature of the sidewalls are  T + ΔT while the inmost 

part is being fixed at T - ΔT, considering ΔT as positive quantity. The fluid flow is invariant along the central 

line, which is controlled with different pressures as explained in Fig. 1.  

The non-dimensional governing equations the bend pipe is written as: 

Continuity equation: 

' ' '
0

' ' '

u v u

r y r

 
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                                                                                                                                        (1) 
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Figure 1. Geometrical view of the bend pipe 
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Energy equation: 
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Where r′ = L + x′, and u′, v′, and w′ are the dimensional quantities and these velocities are nil at the boundary 

layer. The other pieces P′  is the pressure, T′ is the temperature and t′ is the time in dimensional sense. The 

given arrangements ρ, μ, β, κ and g having their usual meaning. Dimensional quantities are then converted into 

non-dimensional component by introducing the characteristic width d and the free stream velocity 0U
d


 . 

The quantities have been defined as:  
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Here u, v and w are the new velocity along x, y
 
and z coordinates, consecutively; t is the dimensionless 

time, P is the pressure, δ is the curvature. A unique variable y
 
is then put on the y axis as y ly . Flow field 

is taken to be homogeneous along the axial path; the one-sided stream function ψ is set up along the x and y 

lines as:  
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After that the rudimental mathematical expression for the axial flow (w), secondary flow (ψ) and 

temperature distribution (T) are calculated from equations (1)-(5) as follows: 
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The dimensionless quantities Dn, Dean number; Gr, Grashof number and Pr, Prandtl number, which 

contain in Eqs. (7) to (9) are expressed as: 
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The boundary conditions for w and ψ are:  
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also boundary condition for T is considered invariant near the walls as follows:  
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                                                                                             (12) 

After forming the above governing equations and the boundary conditions, they have to satisfy the 

symmetry condition with respect to the horizontal wall y = 0 and the solution which satisfies the 

symmetric condition is defined as symmetric solution. The symmetric conditions are explained as: 
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3. Numerical Calculation  

3.1. Method of numerical calculation 

To solve the governing equations (7 to 9) with using the boundary conditions (10-11) numerically, spectral 

method is applied. In this method, the variables are expanded with a series of functions adopting with 

Chebyshev polynomials. The functions φn(x) and ψn(x) are defined as: 
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Where Cn(x) = cos(ncos-1(x)) is the first kind Chebyshev polynomial of nth order. Also, w(x, y, t), ψ(x, y, t) 

and T(x, y, t) are set by using the function βn(x) and χn(x) as: 
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Here m = 1,…, M + 1 and n = 1,…, N + 1
 
where M and N are regarded as grid size. The coefficients of wmn, 

ψmn and Tmn 
 
are discarded into the Eq. (7) - (9) and finally the collocation procedure is employed with the 

coordinates as given. To solve steady solutions, the collocation points (xi, yj) are assumed as:    
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Where i = 1,…, M + 1 and j = 1,…, N + 1. These collocation points are also combined with the Newton-

Raphson iteration method or arc-length method. The equation of the arc-length is: 
2 2 2

0 0
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This equation is calculated with initial guesses. The initial guesses of the equations are considered as s + 

Δs from point s and can be written as: 
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The convergence test is confirmed by accepting ԑp < 10-10, where p refers to repetition of the loop and ԑp is 

defined as: 
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It is also noted that time dependent derivatives are settled as zero to find out the steady solutions. On the 

other hand, to investigate the unsteady flow behavior, time derivatives are also taken and used the same 

collocation points with applying the Cranck-Nicolson together with Adam Bashforth method in equation (7) 

to (9). 

3.2. Grid efficiency   

To explore grid efficiency give the assurance about the numerical algorithm. In this study, grid accuracy is 

checked for different grid size. Here, grid sizes are represented by M and N respectively. Table 1 represents 

the efficiency of the algorithm of governing equations for different grid size. As the present study is based on 

the bend pipe, so M and N are equal. It is obtained that the values of resistance coefficient and axial flow are 

not fluctuated enough for increasing or decreasing grid sizes. So, the grid size M = N = 20 have been taken for 

present numerical calculation.  

Table 1. The values of λ and w(0, 0) for various M and N at Dn = 500, Gr = 500 & δ = 0.2.  

M N Λ w (0, 0) 

16 16 0.364843916150 179.865392315 

18 18 0.364861316538 179.966629534 

20 20 0.364884686333 180.047329293 

22 22 0.364873113927 180.112646909 

24 24 0.364873081751 180.160046771 

3.3. Resistance coefficient  

Resistance coefficient is a dimensionless parameter which is also known as hydraulic resistance coefficient. 

This parameter is widely used in fluids engineering such as curved duct, elliptical duct, pipe etc. 

Mathematically, it can be defined as: 

* * 21 *1 2
* * 2

d d
w

z dh








                                                                                                                               (20) 

Where 
2 *d w

w





 
and the symbols with an asterisk indicate dimensional quantity, the symbol  

is the average quantity and dh
* is addressed as the hydraulic diameter of the bend pipe. The dimensional mean 

velocity <w*> is calculated from: 
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 
1 1

, ,
4 2

1 1

v
w dx w x y t dy

d
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 

                                                                                                      (21) 

By considering 1 2d d z G     , and simplifying the above equations the non-dimensional resistance 

coefficient can be written as:  

4 2
,

2

Dn

w


                                                                                                                                                  (22) 

So it can be easily said from the equation that the resistance coefficient is inversely proportional to the flow 

coefficient which illustrates how much flow capacity an obstruction allows. 

3.4. Nusselt Number  

The Nusselt number (Nu) is required to calculate the heat transfer between cooled and heated sidewalls. 

There are two ways to investigate Nu, such as Nu for both steady solutions and unsteady solutions. The Nu for 

the steady solution can be defined as, 

1
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                                                                                                                            (23) 

and for the unsteady solutions can be identified as: 
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                                                                                                                      (24) 

The notation  in unsteady solutions used for the average over a time interval. The another notation   

is defined as for one period, but when the solution is chaotic it takes as an appropriate time interval. 

4. Result and Discussion  

4.1. Steady Solution with linear stability analysis 

With the path continuation technique, two steady branches are found for Grashof number, Gr = 100, 500 

& 1000 and Dean number, 100 ≤ Dn ≤ 1000 as displayed in Figs. 2 (a), (b) & (c) respectively. The steady 

branches are consecutively designated as "Branch 1 (1st branch)" and "Branch 2 (2nd branch)." The 1st and 2nd 

branch is shown in Fig. 2 by red and blue solid line where only the 1st branch is the only one that covers the 

entire Dean number set. Without turning, the 1st branch initiates at e of Dn = 100 and terminates at d of Dn = 

1000.The 2nd branch starts from d of Dn = 1000 and the continuation path turns at b of Dn = 659.02, 686.78 & 

710.75 (for Grashof number, Gr = 100, 500 & 1000, consecutively) and terminates at c of Dn = 1000. It is 

observed that the 1st branch for Gr = 100, 500 & 1000 has overlapped each other. Alternatively, the region of 

the 2nd branch is curtailed with raising the Grashof number.  

Now, stable and unstable points of the steady branches are computed for two-dimensional case. Here, z - 

axis is regarded as the independent axis and the perturbation technique is applied to find out the linear stability. 

On account of this, the perturbation of flow velocity (w (x, y), ψ (x, y)) and isotherms (T (x, y)) are considered 

as eigenvalue problem which is calculated by combining function expansion and collocation technique. The 

time dependence perturbation is addressed as, eσt, where σ = σr + iσi. Here σr and σi represent the real and 

imaginary part respectively. If only a single positive value is contained in σr then it shows linear unstable. On 

the other hand all the values of σr bear negative value then it is linear stable. It is also noted that there is obtained 

two types of perturbation in the unstable area including oscillatory and monotonically. When 0i  , then the 

unstable area is oscillatory otherwise the unstable area is monotonically. After investigating the linear stability 

for Gr = 100, 500 & 1000, it is observed that only the first branch shows linear stability among the two 

branches. For Gr = 100, 500 & 1000; the linear stable points are bound between 100 ≤ Dn ≤ 846.13, 209.57 ≤ 
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Dn ≤ 1000 and 414.16 ≤ Dn ≤ 1000, respectively as shown in Table 2. The unstable regions are also shown in 

Figs. 2 (a), (b) & (c) by thick black solid line. It is demonstrated from the linear stability analysis that linear 

unstable region at the large Dn and small Gr has reduced for increasing the Gr and a newly unstable region has 

consisted gradually for small Dn and this region has stretched up for rising the Gr.  

Velocity contours (top & middle) and isotherms (bottom) are visualized in Fig. 3. According to axial flow, 

the flow velocities push opposite to the inner portion of the bend pipe and generate two high-velocity regions 

at the broad Dn. The secondary flows narrate that between the necessary range of Dn and Gr, two to four vortex 

asymmetric flows are produced, with only two vortexes for the 1st branch and two to four vortexes for the 2nd 

branch. It is remarked that a close interaction exists between the flow velocities (axial and secondary flow). 

For Gr = 1000 and Dn = 800, a pair of high-velocity regions are occurred at the top and bottom wall which is 

stronger than the previous flow patterns. For this reason, the secondary flows have consisted of four vortex 

secondary flow. 

 

 

 

 

 

(a)                                                                                        (b) 

 

 

 

 

 

 

 

 

                                                (c) 

 

 

 

 

Figure 2. Steady solution branches; for (a) Gr = 100, (b) Gr = 500, (c) Gr = 1000. 
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Table 2. Linear Stability analysis for Gr = 100, 500 & 1000.  

Dn λ σr
 σi

 Decision 

  Grashof  100   

100 1.04721601 -1.0994 0 Linearly Stable 

500 0.36339824 -1.4392 0 Linearly Stable 

800 0.27303853 -1.6433 0 Linearly Stable 

846.12 0.26481960 -3.8247×10-4 -8.3022 Linearly Stable 

846.13 0.26481791 -4.2251×10-4 9.45672 Linearly Unstable 

900 0.25595654 2.6727 12.395 Linearly Unstable 

1000 0.24241801 4.8657 16.704 Linearly Unstable 

  Grashof 500   

100 1.01485593 1.1154 -7.8915 Linearly Unstable 

200 0.63235866 1.3051 9.6032 Linearly Unstable 

209.57 0.61479090 3.1969×10-4 9.8589 Linearly Unstable 

209.58 0.61477643 -9.0179×10-4 -9.8592 Linearly Stable 

300 0.51053290 -1.0737 0 Linearly Stable 

500 0.36355457 -1.3395 0 Linearly Stable 

1000 0.24309512 -1.6883 0 Linearly Stable 

  Grashof 1000   

100 1.01359351 .2099 -0.16966 Linearly Unstable 

400 0.41727406 0.97548 12.308 Linearly Unstable 

414.46 0.41033852 3.7698×10-4 12.665 Linearly Unstable 

414.47 0.41033280 5.6119×10-4 -12.666 Linearly Stable 

500 0.36293876 -1.5590 0 Linearly Stable 

1000 0.24477452 -1.5542 0 Linearly Stable 

 

 

Figure 3. Velocity contours (top & middle) and isotherms (bottom); for Gr =100, 500 & 1000. 

4.2. Unsteady solution   

To examine the nonlinear characteristic of stable and unstable solutions, time evaluation findings are 

accomplished for Gr = 100 and Dn = 100, 500 & 1000 as shown in Figs. 4(a) & 5(a). The time evolution graphs 

reveal stable solution for Dn = 100 and 500, and multi-periodic oscillation for Dn = 1000. As shown in Fig. 

4(a), the value of λ decreases as Dn increases and consequently the time evolution graphs transform into multi-

periodic flows. We also spread out the power spectrum density (PSD) plot of the simulation data for Dn = 1000 

on the Frequency vs. power spectrum density surface in Fig. 5(b) to get a good insight of the flow. PSD reveals 

not only the dynamic frequency line spectrum and its harmonics but also other line spectra and their harmonics 
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with weak amplitudes, indicating that the oscillation in Fig. 5(a) is multi-periodic. Axial velocity, stream 

function and isotherms for Dn = 100, 500 and 1000 are seen in Figs. 4(b) and 6 respectively. The axial velocity 

reveals for Dn = 100 that the velocity has not sufficiently potent/ strong but it has pushed opposite to the outer 

part of the pipe from Dn = 500 and finally, it has produced a pair of high-velocity regions at Dn = 1000. The 

streamlines of secondary flows illustrate that only two-vortex and four vortex flows are generated for steady-

state and multi-periodic oscillation respectively. A robust bond among the flow velocities (axial and secondary 

flow) is also noticed. From Fig. 6, when the axial flows have constructed with a couple two high-velocity areas 

at the top and bottom part, the secondary flows have shown four vortex solutions. It is said that to represent the 

flow velocities and isotherms, the grid space Δψ = 1.29, ΔT = 0.33 and Δw = 13.0 are taken. For all figures in 

this investigation, the corresponding values of flow velocities and isotherms, solid (ψ ≥ 0) and dotted lines (ψ 

< 0) indicate counter-clockwise and clockwise direction consecutively.

 

Figure 4. (a) Transient solution, (b) Velocity contours (top & middle) and isotherms (bottom); for 

Dn = 100 & 500 and Gr = 100. 

 

Figure 5. (a) Transient solution, (b) Power spectrum density; for Dn = 1000 and Gr = 100. 
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Figure 6. Velocity contours (top & middle) and isotherms (bottom); for Dn = 1000 and Gr = 100. 

After that time history of λ has been carried out for Gr = 500 and Dn = 100, 500 & 1000 as represented 

in Figs. 7(a) & 9(a). It is detected that the regular oscillation transforms toward the steady-state for 

increasing the Dean number which is reversed to above exploration. For Dn = 100, the PSD supports the 

periodic flow, as exposed in Fig. 7 (b). Figs. 8 and 9 (b) visualize the flow velocity and the isotherms for 

Dn = 100, 500 and 1000. The time-dependent solution has formed an asymmetric two-vortex 

configuration, where isotherms are consistent with the vortex structure. 

 

 

Figure 7. (a) Transient solution, (b) Power spectrum density; for Dn = 100 and Gr = 500.  
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Figure 8. Velocity contours (top & middle) and isotherms (bottom); for Dn = 100 and Gr = 500. 

 

Figure 9. (a) Transient solution, (b) Velocity contours (top & middle) and isotherms (bottom); for 

Dn = 100 & 500 and Gr = 500. 

If Gr is even raised higher, i.e. at Gr = 1000, the regular oscillation flows change gradually to the 

stable solution which is also justified from table 2. From the stability analysis, it is illustrated that the 

oscillating flows are continued form Dn = 100 to Dn = 414.14 so the steady-state solutions start from Dn 

= 414.15. Figs. 10(a) and 12(a) expressed the time-dependent solution for Dn = 100 and Dn = 500 & 1000 

respectively. PSD is moreover disclosed for Dn = 100 in Fig. 10(b), and the velocity contours and the 

isotherms are interpreted in Figs. 11 and 12(b) for Dn = 100 and Dn = 500 & 1000 consecutively. It is 

suggested that the time-dependent solution appears to be nearly identical at Gr = 500 and Gr = 1000 but 

there are some differences in the flow characteristics. It can be shown that increasing the Gr upsurges the 

number of dysfunctional regions in relation to the Dn. But the oscillation of the flow has become weaker 

for high Gr at low Dn which has been found by the PSD analysis as seen in Fig. 7. 
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Figure 10. (a) Transient solution, (b) Power spectrum density; for Dn = 100 and Gr = 1000. 

 

Figure 11. Velocity contours (top & middle) and isotherms (bottom); for Dn = 100 and Gr = 

1000. 
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Figure 12. (a) Transient solution, (b) Velocity contours (top & middle) and isotherms (bottom); 

for Dn = 100 & 500 and Gr = 1000. 

4.3. Energy transfer 

Here, energy transfer through bend pipe is calculated for several Grashof number (Gr = 100, 500 & 1000) 

and exposed in Figs. 13 (a), (b) & (c) respectively. In the figures, the black solid lines are represented for the 

cooled sidewalls and red solid lines are addressed for the heated sidewalls which are obtained from the steady 

branches (section 4.1) and calculated by equation (23) where the equation represents that the Nu’s are 

conducted as a directory of horizontal energy distribution from the sidewalls to the fluid. In this study, two 

steady solution branches are found (section 4.1). Herein, only the first branch is taken to visualize the energy 

transfer because the first branch shows linear stability and covers the entire Dn among the steady branches. On 

the other hand, the circle and cross symbols in the figures are obtained from the time average of Nu enumerated 

by equation (24). To be more explicitly, time-dependent solutions for a fixed Dean number are found out at 

first and then the average of that data is computed and traced in the Figs. 13 (a), (b) & (c). However, after 

depicting the heat transfer for three different Grashof number, Gr = 100, 500 & 1000, different types of 

behavior is found. For Gr = 100, 500 & 1000, the solid lines and symbols in steady states solution have 

coincided with each other when a steady-state solution occurs. But, when the steady-state solution converts 

into periodic, heat transfer in Gr = 100 at heated sidewalls has enhanced more than the cooled sidewalls. 

Alternatively, energy distribution reduced at the heated sidewalls at Gr = 1000 than the cooled sidewalls. This 

is generated due to the advection and fluid mixing in the pipe. So, it can be said that because of the increasing 

Dean number, the heat is generated more and creates better flow separation at the outer and bottom sidewalls 

of the pipe. 
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Figure 13. Energy transfer; for (a) Gr = 100, (b) Gr = 500, (c) Gr = 1000. 

4.4. Numerical Validation with experimental results 

In this section, a validation between the numerical and experimental results is performed. Many authors 

experimentally explored the flow characteristics for different Dean and Taylor numbers or for changing the 

time. One of the scholars of them, Wang and Yang (2005) disclosed the secondary fluid flow characteristics 

for non-rotating curved duct. Here, we compared our numerical data to Wang and Yang's (2005) experimental 

findings. At first, a scheme of the bend duct is constructed and then some smoke are injected through the pipe 

with constant Dn = 300 which was monitored by a pressure regulator. The smokes were produced by burning 

Chinese incenses near the settling chamber’s inlet. After injecting smoke, some photos of the smoke flow were 

captured from the 270o inlet for observing the flow characteristics at various times. For comparison, we have 

transformed the value of the parameters that are same as Wang and Yang (2005) data. Then we have also run 

the program with fixing the Dean number (Dn = 300) and found some secondary flows for different times 

which are shown in Fig. 14. It is demonstrated from the figure that the secondary flow found by the numerical 

outcomes is totally same as the experimental results. 
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Figure 14. Validation of the numerical results (found by authors, right of the figure) and the 

experimental outcome (found by Wang and Yang (2005), left of the figure) at Dn = 300. 

5. Conclusion  

In the ongoing exploration, two-dimensional calculations of the flow through the bend square pipe are 

examined for an extensive range of Dn and Gr, 100 ≤ Dn ≤ 1000; 100 ≤ Gr ≤ 1000 with fixed curvature, δ = 

0.2. At first, two steady branches are found from steady solution where there is no bifurcation connection 

between them. It is seen that the region of the 2nd branch is reduced for raising the Grashof numbers. Linear 

stability for different Grashof numbers is also tested and only the first steady branch has shown the linear 

stability. The time-dependent solutions disclose various types of flow instabilities. For Gr = 100 to Gr = 400, 

the scheme of the flow behaviors have “steady-state → periodic and for increasing the flow behavior are 

reversed, i.e., it reveals periodic → steady-state between 500 ≤ Gr ≤ 1000. To better assurance about the 

oscillating behavior, power spectrums are further drawn. Fow velocities (axial and secondary flow) and 

isotherms are demonstrated while seconday velocity for 2nd branch represents that two vortex solutions 

become four vortexes due to the turning of the branch. The flow behavior of the unsteady solutions said that 

two vortexes have existed for the steady-state solution whereas only two- and four-vortex solutions have been 

traced out for the periodic/multi-periodic flows. Energy transfer through the pipes reveals that the heat is 

increased at periodic flows more than steady states flows. Since the flows oscillate, as a result, the fluid particles 

collide properly as well as increase the overall heat throughout the fluid particles. 
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